

Dual RTK-GNSS/INS Module

1 特性

1.1 硬件

- 高性能阵列 IMU
- 出厂-40-85℃全温温补, 标定比例因子、跨轴、零偏
- 陀螺仪零偏不稳定性高达 2.5°/h
- 加速度计零偏不稳定性高达 30ug
- RS-232/RS-422/CAN 等多种接口
- 小体积表贴封装,易于集成
- RoHS、CE、IP68 认证(申请中)
- 全星座、全频点 RTK-GNSS 系统,双天线测向

1.2 软件

- 自适应扩展卡尔曼融合算法,高达 100Hz 输出,低延时
- 双天线定向 0.2° 1m 基线
- 对线性加速度有出色的抑制作用
- 授时精度 20ns
- 单点定位 1.5m
- RTK 定位精度 1cm
- 速度精度 0.03m/s
- 冷启动时间<30s
- 热启动时间<2s
- 支持二进制、NMEA、J1939 等多种协议
- 丰富的用户配置指令
- 多功能 GUI,方便操作
- 支持 ROS、C 等多种例程

2 应用

- 室外低速无人驾驶
- 无人船
- 动中通
- 农业机械
- 巡检机器人

3 描述

3.1 产品外观

Figure1: HI32

3.2 系统框图

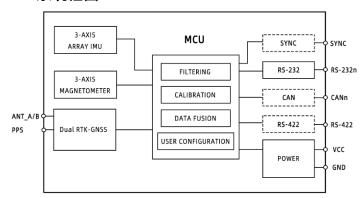


Figure2: Functional Block Diagram

Note1: 虚线表示并不是所有的型号都支持,具体参考产品选型表 Table 1

3.3 通用描述

HI32 组合导航系统集成了高性能惯性测量单元(IMU)和功能强大的双天线、全频段、全频点 RTK GNSS 接收机,凭借领先的算法和集成方面的专长。我们将 IMU 和 GNSS 数据融合,即使在 GNSS 信号失锁的环境中仍能为您的应用提供准确、实时的位置、速度、姿态、授时等信息。

每一个传感器出厂之前都经过了精细的补偿包括温度、零偏、比例因子、跨轴。

多功能上位机(GUI)可以帮助快速地评测产品,这些功能包括并不限于模块配置、数据显示、固件升级、数据记录等。

选型与订购信息,请参见 Table 1,Table 2

目录

l 特性	
1.1 硬件	
1.2 软件	
2 应用	
3 描述	
3.1 产品外观	
3.2 系统框图	
3.3 通用描述	
4 产品选型	
5 产品订购	!
5.1 订购信息	
5.2 联系我们	
6 文档信息	
6.1 适用范围	
6.1.1 固件版本	
6.1.2 硬件版本	
6.2 文档版本信息	
6.3 相关文档与开发套件	
7 参数	
7.1 绝对最大值	
7.2 正常工作	
7.3 接口参数	
7.4 陀螺仪	
7.5 加速度计	
7.6 磁力计	(
7.7 Allan 方差曲线	
7.8 GNSS 参数	
7.9 融合参数	
7.9.2 融合精度	
7.10 机械与环境参数	
7.11 产品尺寸与引脚定义	
7.11 戸品尺寸 三 1	
7.11.2 引脚定义与线束(1T12 航空插头转 DB9+OPEN MI0)	
7.11.3 引脚定义与线束(1T12 航空插头转 OPEN MIO)	
7.11.4 引脚定义与线束(1T12 航空插头转 OPEN MI1)	
8 坐标系定义与安装	

REV:1.0

	8.1 坐标系	14
	8.2 传感器安装	14
	8.3 接线	15
	8.3.1 1T12 航插转 DB9+OPEN	15
	8.3.2 1T12 航插转 OPEN	
	8.3.3 DTU	16
9 初如	始配置	17
	9.1 接口初始配置	17
	9.2 IMU 初始配置	17
10 通	值信协议	18
	10.1 串行二进制协议	
	10.2 CAN	18
11 包]装	19

4 产品选型

Table 1: 选型信息

HI32a-b-cde									
公司标识	产品系列	a-传感器	b-数据接口	c-保留	d-连接器	e-定制信息			
HI	32	R6 4XIMU+Magnetic+RTK-GNSS	MIO	0 默认	0 1T12 航空插头	0 默认			
		R7 4XIMU+Magnetic+Dual RTK-GNSS	MI1		1 J30	其他 OEM			
			MI2						

Note1: 型号举例 HI32R7-MI0-000

Note2: J30 接口需要定制

Note3: MI2 接口带有数据同步引脚需要定制

5 产品订购

5.1 订购信息

Table 2: 订购信息

Part Number	Name	Description	备注
HI32R6-MI0-000	RTK-GNSS/INS Module	单天线 RTK 组合导航模块 1T12 航空连接器 MIO	
HI32R7-MI0-000	Dual RTK-GNSS/INS Module	双天线 RTK 组合导航模块 1T12 航空连接器 MIO	
HI32R7-MI1-000	Dual RTK-GNSS/INS Module	双天线 RTK 组合导航模块 1T12 航空连接器 MI1	
HI32R7-MI2-000	Dual RTK-GNSS/INS Module	双天线 RTK 组合导航模块 1T12 航空连接器 MI2	

5.2 联系我们

产品可以通过以下形式订购:

- 1. 可以通过邮件与我们销售联系 sales@hipnuc.com
- 2. 可直接拨打电话进行联系

座机: 010-69726346 移动电话: 15801501203 web: www.hipnuc.com

3. 添加微信

4. 公众号与官网

新产品和技术资料可以通过官网获得

6 文档信息

6.1 适用范围

6.1.1 固件版本

文档所提到的某些功能仅在 2.3.0 及以上版本的固件中支持,详细功能以咨询我们为主。

6.1.2 硬件版本

文档适用于硬件版本为 C5 及以上的模组。版本变更历史如下:

Table 3: 硬件版本变更

硬件版本	变更内容	
C5	初始版本	
C6	增加天线供电防护	

6.2 文档版本信息

Table 4: 文件版本

版本	日期	作者	变更内容
1.0	2024年9月6日	Hipnuc	初始版本

6.3 相关文档与开发套件

- 1. 指令与编程手册
- 2. CAE/封装文件
- 3. GUI 上位机与参考例程
- 4. HI32 系列测试报告

7 参数

如无特殊备注,测试温度 25℃,供电电压 24V

7.1 绝对最大值

Table 5: 绝对最大值

Parameters	Limit	Comment	
机械冲击	2000g	Duration <1ms	
存储温度	-40°C-85°C		
ESD HBM	15KV	JEDEC/ESDA JS-001	
输入电压 Vs	40V		
RS-232 TX to GND	±13.2V		
RS-232 RX to GND	±24V		
CAN H or CAN L to GND	±40V		
CAN H to CAN L	±27V		
RX+ or RX- to GND	-0.3V-6V		
TX+ or TX- to GND	-12V-12V		
SYNC/PPS To GND	-0.3-3.6V		

7.2 正常工作

Table 6: 正常工作

Parameters	Condition	Min	Nom	Max	Unit	Note
输入电压		9		36	V	
功耗			1.6	2	W	
工作温度		-40	-	85	°C	
陀螺仪量程		125	2000	2000	°/s	1
加速度计量程		3	6	24	g	1

Note1: 如需配置其他量程,可以参考指令与编程手册进行配置

Table 7: 通信接口功能描述

Interface	Description
COM 1/RS-422	传感器数据输入与输出,传感器配置
COM 2	差分数据输入 接 DTU,可配置输出传感器数据
CAN	传感器数据输入输出 轮速记输入

7.3 接口参数

Table 8: 接口参数

Interf	Parameters	Condition	Min	Nom	Max	Unit	Note
	波特率		9600	115200	921600	bps	
	起始位		0	1		bit	
RS-232/RS-422	数据长度		0	8		bits	
K3-232/K3-422	停止位			1		bit	
	校验位			无		bit	
	输出帧率		0	10	100	Hz	1
	波特率		125	500	1000	kbps	
CAN	输出帧率		-	10	100	Hz	1
CAN	逻辑电压	High	2.0	3.3	3.6	V	
	之 再 七	Low			0.6	V	
PPS	逻辑电压	High	2.0	3.3	3.6	V	
SYNC		Low			0.6	V	

Note1: 如需修改波特率,数据帧率,协议等信息参考指令与编程手册

7.4 陀螺仪

Table 9: 陀螺仪参数

Parameters	Condition	Product	Min	Nom			Note
量程				2000		°/s	
分辨率				16bit			
比例因子	100°/s			<280	350		1
非线性	最佳拟合直线 Fs=2000°/s		-0.05	-	0.05	%Fs	2
3dB 带宽				23		Hz	
采样率				1000		Hz	
零偏不稳定性	Allan Variance			2.5		°/h	3
零偏重复性	Allan Variance			0.05		°/s	3
角度随机游走	Allan Variance			0.3		°/√h	3
加计敏感性	All three axis			0.1		°/s/g	

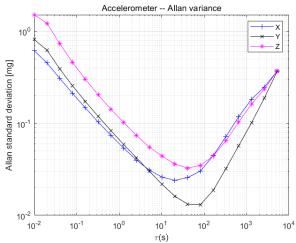
Note1: 转台正反各旋转 10 圈,取平均测得,用户焊接之后此值会受影响,具体以实际为准

Note2: 在指定范围内与最佳拟合直线的最大偏差 Note3: 测试样品平均值,参考 7.8-Allan 方差曲线

7.5 加速度计

Table 10: 加速度计参数

Parameters	Condition	Product	Min	Nom	Max	Unit	Note
量程				6	24	g	
分辨率				16bit			
初始零偏					10	mg	1
非线性	最佳拟合直线 Fs=3g			0.5		%Fs	2
3dB 带宽				80		Hz	
采样率				1600		Hz	
零偏不稳定性	Allan Variance			30		ug	3
零偏重复性	Allan Variance			1.5		mg	3
随机游走	Allan Variance			0.04		m/s√h	3


Note1: 用户焊接之后此数值会有变化,以实际为准 Note2: 在指定范围内与最佳拟合直线的最大偏差 Note3: 测试样品平均值,参考 7.8-Allan 方差曲线

7.6 磁力计

Table 11: 磁力计参数

Parameters	Condition	Min	Nom	Max	Unit	Note
量程			2	8	Gauss	
分辨率	Fs=2G		2		mGauss	
采样率			200Hz			
线性度	最佳拟合直线 Fs=2G		0.1		Fs%	

7.7 Allan 方差曲线

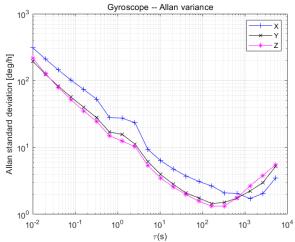


Figure4: Gyroscope Allan Variance

7.8 GNSS 参数

Parameters	Description		Note			
通道	1408 通道					
星座	BDS/GPS/GL	BDS/GPS/GLONASS/Galileo/QZSS				
	BDS B11/B21/	ВЗІ				
频点	GPS L1 C/A/	GPS L1 C/A/L2P(Y)/L2C/L5				
	Galileo E1/E	5a/E5b				
	GLONASS L1	/L2 QZSS L1/L2/L5				
冷启动	<30s					
热启动	<5s		1			
	单点(RMS)	水平:1.5m				
	半 温(にいり)	高程:2.5m				
定位精度	DGPS(RMS) RTK(RMS)	水平:0.4m+1ppm	2,3			
足世相反		高程:0.8m+1ppm	2,3			
		水平:0.8cm+1ppm				
	KTK(KMJ)	高程:1.5cm+1ppm				
定向精度(RMS)	0.2°/1m 基线					
授时精度(RMS)	20ns					
速度精度(RMS)	0.03m/s		4			
数据更新率	20Hz					
最大速度	500m/s					
最大高度	50000m					

Note1: 断电 10min 内,此数值与系统断电时间长度有关,断电时间过长相当于冷启动

Note2:测试结果受大气条件、基线长度、GNSS 天线类型、多路径、可见卫星数以及卫星几何构型等影响,可能会有偏差

Note3: 测量使用 1 公里基线和天线性能良好的接收机,不考虑可能的天线相位中心偏移误差

Note4: 开阔天空,无遮挡场景,99% @静态

7.9 融合参数

7.9.1 融合算法与数据内容

Table 12: 融合参数

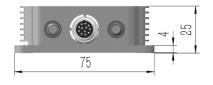
Parameters	Description		Data sources
		NMEA(GGA/RMC/VTG)	GNSS
数据输出	COM1/RS-422	NMEA(SXT)	组合导航 GNSS-INS
		二进制协议(HiPNUC)	GNSS/GNSS-INS
	CAN SAE J1939		GNSS/GNSS-INS
数据内容	速度、位置、姿态、	时间等信息	
融合算法	EKF		
外部传感器	里程计 DTU 等		

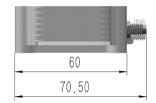
7.9.2 融合精度

Outomo de mation	Docitioning mode	Desition agains at DMC	Volacity accuracy DMC	Attitude accuracy RMS	
Outage duration	Positioning mode	Position accuracy RMS	velocity accuracy Kivis	Pitch/Roll	Heading
3s	RTK and Odometer	3cm	0.03m/s	0.15°	0.1°
10s		30cm	0.09m/s	0.2°	0.15°
60s		5m	0.25m/s	0.2°	0.25°

Note1: GNSS 失锁前处于 RTK 模式,失锁后有里程计介入

7.10 机械与环境参数


Table 13: 机械与环境参数


Parameters	Description
尺寸	75x70.5x25.2mm
重量	180g
外壳材质	铝合金 CNC
抗振动	1.0mm(10Hz-58Hz)&≤20g(58Hz-600Hz)
环保	RoHS 指令 2011/65/EU
EMC	LVD Directive 2014/35/EU
跌落测试	在高 75cm 的实验台上,自由跌落 3 次
温度冲击	温度在 1h 内从-40℃升至 85℃,5 次

7.11 产品尺寸与引脚定义

All Dimensions in mm units.

7.11.1 产品尺寸

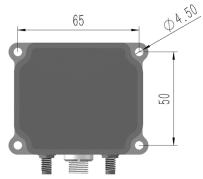


Figure5: HI32 Mechanical Dimension

7.11.2 引脚定义与线束(1T12 航空插头转 DB9+OPEN MIO)

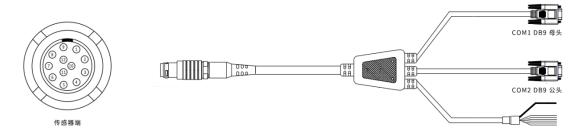


Figure6: Pin definition

Table 14: 引脚描述

MIO	Pin Name	Туре	Color	Description	Note
1	Vs	POWER	Red	电源输入 9-36V	OPEN
2	PGND	POWER	Black	电源地	OPEN
3	SGND	POWER		信号地	COM1 DB9 母头 Pin 5
4	RS232-TXD1	0		COM1 数据发送	COM1 DB9 母头 Pin 2
5	RS232-RXD1	1		COM1 数据接收	COM1 DB9 母头 Pin 3
6	CAN1-H	AIO	Brown	CAN1 High	OPEN
7	CAN1-L	AIO	PurPle	CAN1 Low	OPEN
8	SGND	POWER	Yellow	信号地	OPEN
9	PPS	0	Green	秒脉冲信号	OPEN
10	SGND	POWER		信号地	COM2 DB9 公头 Pin 5
11	RS232-TXD2	0		COM2 数据发送	COM2 DB9 公头 Pin 3
12	RS232-RXD2	1		COM2 数据接收	COM2 DB9 公头 Pin 2

Note1: PGND 与 SGND 内部相连

Note2: 此线束为默认线束

7.11.3 引脚定义与线束(1T12 航空插头转 OPEN MIO)

Table 15: 引脚描述

MIO	Pin Name	Type	Color	Description
1	Vs	POWER	Red	电源输入 9-36V
2	PGND	POWER	Black	电源地
3	SGND	POWER	Green	信号地
4	RS232-TXD1	0	Yellow	COM1 数据发送
5	RS232-RXD1	I	White	COM1 数据接收
6	CAN1-H	AIO	Brown	CAN1 High
7	CAN1-L	AIO	Blue	CAN1 Low
8	SGND	POWER	Grey	信号地
9	PPS	0	Orange	秒脉冲信号
10	SGND	POWER	Purple	信号地
11	RS232-TXD2	0	Pink	COM2 数据发送
12	RS232-RXD2	1	Light Green	COM2 数据接收

7.11.4 引脚定义与线束(1T12 航空插头转 OPEN MI1)

Table 16: 引脚描述

MI1	Pin Name	Type	Color	Description
1	Vs	POWER	Red	电源输入 9-36V
2	PGND	POWER	Black	电源地
3	SGND	POWER	Green	信号地
4	TX+	0	Yellow	RS-422 数据发送+
5	TX-	0	White	RS-422 数据发送-
6	RX+	I	Brown	RS-422 数据接收+
7	RX-	I	Blue	RS-422 数据接收-
8	SGND	POWER	Grey	信号地
9	PPS	0	Orange	秒脉冲信号
10	SGND	POWER	Purple	信号地
11	RS232-TXD2	0	Pink	COM2 数据发送
12	RS232-RXD2	I	Light Green	COM2 数据接收

8 坐标系定义与安装

8.1 坐标系

载体坐标系定义如下: 载体前进方向为 Y 轴正方向,X 轴指向载体右侧,构成东北天-右前上坐标系。被测载体、GNSS 天线、HI32 三者之间需要刚性连接。

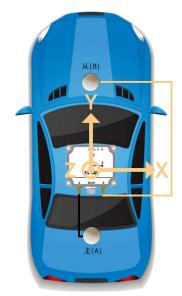


Figure7: HI30 Coordinate System

8.2 传感器安装

双天线分为 A 天线和 B 天线,在传感器外壳上有醒目标识,其中 A 为主天线(定位天线),B 为从天线(定向天线),AB 天线所确定的向量 (从 A 到 B),称为定向基线。 AB 天线所确定的向量需与载体前进方向(IMU Y 轴正方向)的夹角为 0°(顺时针为正)。AB 天线的距离推荐在 0.8 - 2m 之间,注意天线位置安装完毕后,需要重新上电或者重启模块。

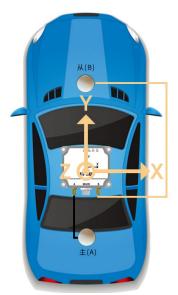


Figure8: HI30 Coordinate System

Note1: 如需改变双天线与 IMU 之间的相对安装角度,可使用配置命令 SETBASELINE 来实现,详见配置命令章节。

8.3 接线

8.3.1 1T12 航插转 DB9+OPEN

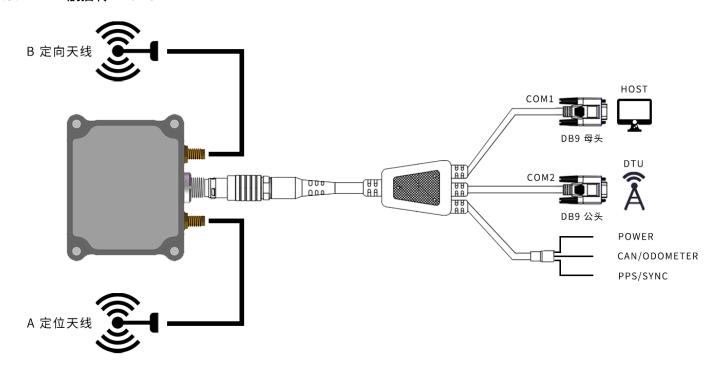


Figure9: 1T12 航插转 DB9+OPEN 接线示意图

8.3.2 1T12 航插转 OPEN

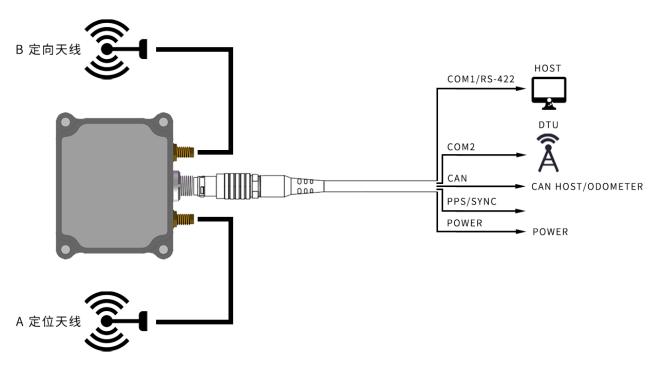


Figure10: 1T12 航插转 OPEN 接线示意图

8.3.3 DTU

用户如果想实现高精度定位,需要使用 HI32 的 RTK 功能,HI32 默认支持塔石的 4G DTU,型号为 TAS-LTE-360 可以实现自动配置并 完成 RTK 差分数据接入。具体请参考指令与编程手册

Figure11: 4G DTU

9 初始配置

HI32 系列设计的初衷是用户进行最低限度的配置,以实现覆盖绝大部分应用场景的操作。因此默认配置已经可以满足很多工况的场景,但是我们也为用户提供了其他配置选项以应对特殊场景。

9.1 接口初始配置

Table 17: 接口初始配置

Interf	Default function	Parameters	Value	Unit	Note
		波特率	115200	bps	1
		起始位	1	bit	
		数据长度	8	bits	
COM1/RS-422	传感器数据输出与配置	停止位	1	bit	
		校验位	None		
		协议	SXT,GGA		1
		数据帧率	10	Hz	1
		波特率	115200	bps	1
	接外部 DTU	起始位	1		
COM2		数据长度	8		
		停止位	1		
		校验位	None		
		协议	SAE J1939		1
CAN1	传感器数据输出	波特率	500K	bps	1
CAINT	12公益災垢制山	数据帧率	10	Hz	1
		120Ω匹配电阻	None		

Note1: 如需更改波特率,协议,输出帧率,请参考指令与编程手册

9.2 IMU 初始配置

Table 18: 传感器初始配置

Parameters	Value	Unit	Note	
陀螺仪量程	±2000	°/s	1	
3dB 带宽	23	Hz	1	
加速度计量程	±6	g	1	
3dB 带宽	80	Hz	1	
磁力计量程	±2	Gauss	1	

10 通信协议

10.1 串行二进制协议

为方便用户使用,我们提供了比较丰富的串行协议供用户选择,更详细的内容请参考指令与编程手册。

10.2 CAN

模块默认输出协议为 SAE J1939

11 包装

HI32 系列模块有专属定制的 EPE 泡棉衬底,然后再将其装入盒中。如下图所示:

Figure12: HI32 装箱示意图

装箱内容包含 HI32 主机、数据线、GNSS 天线、天线馈线、天线磁吸座、DTU

Table 19: 纸盒尺寸

产品	SPQ(mm)	L(mm)	W(mm)	H(mm)
HI32	2	36	36	9.2